跳到主要内容

query - 向量查询

query() 用于执行向量相似性搜索,以找到与查询向量最相似的 documents。

信息

仅支持在使用 Client 连接时,才能使用该接口。关于 Client 的详细介绍,参见 Client

前提条件

请求参数

query()
参数取值类型是否必选描述取值示例
query_embeddingsList[float] or List[List[float]]必选用于批量查询的单个向量或向量列表;如果提供,则直接使用(忽略embedding_function);如果没有提供,则必须提供 query_textcollection 必须具有 embedding_function[1.0, 2.0, 3.0]
query_textsstr or List[str]可选单个 vectors 或 vectors 列表;如果提供,则直接使用(忽略 embedding_function);如果没有提供,则必须提供 documents,同时 collection 必须具有 embedding_function["my query text"]
n_resultsint必须返回相似的结果数,默认值为 103
wheredict可选Metadata 筛选条件。{"category": {"$eq": "AI"}}
where_documentdict可选Document 筛选条件。{"$contains": "machine"}
includeList[str]可选要包含的字段列表:["documents", "metadatas", "embeddings"]["documents", "metadatas", "embeddings"]
信息

使用的 embedding_function 是与 collection 相关联的(在 create_collection()get_collection() 期间设置)。您不能每次操作都覆盖它。

请求示例

import pyseekdb

# Create a client
client = pyseekdb.Client()

collection = client.get_collection("my_collection")
collection1 = client.get_collection("my_collection1")

# Basic vector similarity query (embedding_function not used)
results = collection.query(
query_embeddings=[1.0, 2.0, 3.0],
n_results=3
)

# Iterate over results
for i in range(len(results["ids"][0])):
print(f"ID: {results['ids'][0][i]}, Distance: {results['distances'][0][i]}")
if results.get("documents"):
print(f"Document: {results['documents'][0][i]}")
if results.get("metadatas"):
print(f"Metadata: {results['metadatas'][0][i]}")

# Query by texts - vectors auto-generated by embedding_function
# Requires: collection must have embedding_function set
results = collection1.query(
query_texts=["my query text"],
n_results=10
)
# The collection's embedding_function will automatically convert query_texts to query_embeddings

# Query by multiple texts (batch query)
results = collection1.query(
query_texts=["query text 1", "query text 2"],
n_results=5
)
# Returns dict with lists of lists, one list per query text
for i in range(len(results["ids"])):
print(f"Query {i}: {len(results['ids'][i])} results")

# Query with metadata filter (using query_texts)
results = collection1.query(
query_texts=["AI research"],
where={"category": {"$eq": "AI"}},
n_results=5
)

# Query with comparison operator (using query_texts)
results = collection1.query(
query_texts=["machine learning"],
where={"score": {"$gte": 90}},
n_results=5
)

# Query with document filter (using query_texts)
results = collection1.query(
query_texts=["neural networks"],
where_document={"$contains": "machine learning"},
n_results=5
)

# Query with combined filters (using query_texts)
results = collection1.query(
query_texts=["AI research"],
where={"category": {"$eq": "AI"}, "score": {"$gte": 90}},
where_document={"$contains": "machine"},
n_results=5
)

# Query with multiple vectors (batch query)
results = collection.query(
query_embeddings=[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]],
n_results=2
)
# Returns dict with lists of lists, one list per query vector
for i in range(len(results["ids"])):
print(f"Query {i}: {len(results['ids'][i])} results")

# Query with specific fields
results = collection.query(
query_embeddings=[1.0, 2.0, 3.0],
include=["documents", "metadatas", "embeddings"],
n_results=3
)

返回参数

参数取值类型是否必选描述取值示例
idsList[List[str]]必选需要新增或者修改的 ID。可以是单个,也可以是数组。item1
embeddings[List[List[List[float]]]]可选vectors;如果提供,直接使用(忽略 embedding_function),如果不提供,可以提供 documents 来自动生成 vectors。[0.1, 0.2, 0.3]
documents[List[List[Dict]]]可选documents。如果没有提供 vectorsdocuments 将使用 collection 的 embedding_function 转换为 vectors。"Document text"
metadatas[List[List[Dict]]]可选metadata。{"category": "AI"}
distances[List[List[Dict]]]可选{"category": "AI"}

返回示例

ID: vec1, Distance: 0.0
Document: None
Metadata: {}
ID: vec2, Distance: 0.025368153802923787
Document: None
Metadata: {}
Query 0: 4 results
Query 1: 4 results
Query 0: 2 results
Query 1: 2 results

相关操作