Skip to main content

seekdb MCP server

seekdb MCP server implements Anthropic's MCP (Model Context Protocol), enabling AI assistants to interact with a seekdb database and translate natural language into database operations. You describe what you want in plain language, and the assistant can create collections, insert data, run complex queries, and even help you build a complete knowledge base workflow.

This topic introduces the capabilities and usage of seekdb MCP server. For more information about seekdb, see seekdb database.

Architecture and features

Core capabilities

seekdb MCP server exposes database tools directly to AI assistants.

CategoryToolsDescription
Vector collection managementcreate_collection, query_collection, add_data_to_collection, etc.Create vector collections, run semantic search, and manage documents
Advanced searchfull_text_search, hybrid_searchFull-text search and hybrid search (BM25 + vectors)
AI functionsai_complete, ai_rerank, create_ai_model, etc.Call LLMs for text generation and rerank search results
AI memory systemseekdb_memory_query, seekdb_memory_insert, etc.Persistent memory across sessions so the assistant can "remember" you
Data import/exportimport_csv_file_to_seekdb, export_csv_file_from_seekdbConvert CSV files to and from database tables / vector collections

Vector collection management

ToolDescription
create_collectionCreate a vector collection
list_collectionsList all collections
has_collectionCheck whether a collection exists
peek_collectionPreview documents in a collection
add_data_to_collectionAdd documents (embeddings are generated automatically)
update_collectionUpdate documents
delete_documentsDelete documents
query_collectionVector similarity search
delete_collectionDelete a collection
ToolDescription
full_text_searchFull-text search (keyword-based)
hybrid_searchHybrid search (full-text + vector search)

AI model tools

ToolDescription
create_ai_modelRegister an AI model (embedding, text generation, or reranking)
create_ai_model_endpointCreate an endpoint that connects a model to an API service
drop_ai_modelRemove a registered AI model
drop_ai_model_endpointRemove an AI model endpoint
ai_completeGenerate text using an LLM
ai_rerankRerank documents by relevance using an AI model
get_registered_ai_modelsList all registered AI models
get_ai_model_endpointsList all AI model endpoints

AI memory system

seekdb MCP server provides an AI memory layer that allows assistants to remember information across sessions.

ToolDescription
seekdb_memory_querySemantic search over memory
seekdb_memory_insertStore new memories
seekdb_memory_updateUpdate memories
seekdb_memory_deleteDelete memories

Common use cases:

  • Remember your preferred stack (for example, "I prefer Python").
  • Remember project context (for example, "This project uses FastAPI").
  • Remember personal preferences (for example, "I prefer clean code style").

Data import/export

ToolDescription
import_csv_file_to_seekdbImport a CSV file into a vector collection
export_csv_file_from_seekdbExport data from a vector collection to a CSV file

SQL operations

ToolDescription
execute_sqlExecute an SQL query
get_current_timeGet the current time from the database

Installation and configuration

Install the seekdb database

Before you use seekdb MCP Server, you need a running seekdb database. seekdb supports two deployment modes. For details, see Deploy seekdb.

  • Embedded mode (zero configuration; Linux only)

    If you use embedded mode, you do not need to install seekdb separately. When you start seekdb MCP server, it initializes a local embedded database automatically.

    This is suitable for: personal learning, rapid prototyping, and edge devices.

    tip

    Embedded mode is currently supported on Linux only. If you are on macOS or Windows, use seekdb client/server mode and deploy seekdb first (Docker is recommended).

  • Client/server mode (recommended for production)

    For details, see Deploy seekdb using yum install and Deploy seekdb in a container environment.

Install seekdb MCP server

Install uv

curl -LsSf https://astral.sh/uv/install.sh | sh

Configure your AI tool

Stdio transport

Using Cursor as an example: open SettingsTools & MCPNew MCP Server, then choose the configuration based on your OS.

  • Linux (embedded mode):

    {
    "mcpServers": {
    "seekdb": {
    "command": "uvx",
    "args": ["seekdb-mcp-server"]
    }
    }
    }

    When the server starts, it automatically initializes a local embedded seekdb database.

  • macOS / Windows (client/server mode):

    macOS and Windows do not support embedded mode. Deploy seekdb first (Docker is recommended), then configure the connection parameters:

    {
    "mcpServers": {
    "seekdb": {
    "command": "uvx",
    "args": ["seekdb-mcp-server"],
    "env": {
    "SEEKDB_HOST": "127.0.0.1",
    "SEEKDB_PORT": "2881",
    "SEEKDB_USER": "root",
    "SEEKDB_PASSWORD": "",
    "SEEKDB_DATABASE": "test"
    }
    }
    }
    }

    Parameter reference:

    ParameterDescriptionDefault
    SEEKDB_HOSTseekdb server host127.0.0.1
    SEEKDB_PORTseekdb server port2881
    SEEKDB_USERDatabase usernameroot
    SEEKDB_PASSWORDDatabase password(empty)
    SEEKDB_DATABASEDatabase nametest
SSE transport
  • Linux (embedded mode)

    Start the SSE server:

    uvx seekdb-mcp-server --transport sse --port 6000
  • macOS / Windows (client/server mode)

    1. Configure environment variables, then start the server:

      export SEEKDB_HOST=127.0.0.1
      export SEEKDB_PORT=2881
      export SEEKDB_USER=root
      export SEEKDB_PASSWORD=
      export SEEKDB_DATABASE=test
    2. Start the SSE server:

      uvx seekdb-mcp-server --transport sse --port 6000
    3. Configure the client:

      {
      "sse-seekdb": {
      "type": "sse",
      "url": "http://127.0.0.1:6000/sse"
      }
      }

Application scenarios

seekdb MCP server is suitable for a wide range of use cases.

Build a knowledge base

Store documents, notes, and code snippets in a vector collection and find relevant content with semantic search:

"Add this article about React Hooks to the knowledge base"
"Search for previously saved notes on state management"

Prototype a RAG app

Validate ideas for RAG (retrieval-augmented generation) applications without building a complex backend:

"Create a collection of product documents and import them"
"Answer user questions based on these documents"

Data analysis

Import CSV data and analyze it using natural language:

"Import this sales data CSV file"
"Analyze last month's sales trends"

Enhance AI coding assistants

Give AI coding assistants persistent memory:

"Remember: This project uses PostgreSQL as the primary database"
"Remember: I prefer TypeScript over JavaScript"

More operations

To try a hands-on workflow end to end, see Build a personal knowledge base with seekdb MCP and AI chat.